Na@SiO2-Mediated Addition of Organohalides to Carbonyl Compounds for the Formation of Alcohols and Epoxides

نویسندگان

  • Mohit Kapoor
  • Jih Ru Hwu
چکیده

Alcohols and epoxides were generated by the addition of organohalides to carbonyl compounds in the presence of sodium metal impregnated with silica gel (Na@SiO2) in THF at 25 °C through a radical pathway. Under the same conditions, Schiff bases were also successfully converted to the corresponding amines. Furthermore, the reaction of aldehydes with α-haloesters or 4-(chloromethyl)-coumarin with the aid of Na@SiO2 generated trans epoxides. An unprecedented mechanism is proposed for their formation. The advantages associated with these new reactions include: (1) products are obtained in good-to-excellent yields, (2) reactions are completed at room temperatures in a short period of time (<2.0 h), (3) it is unnecessary to perform the reactions under anhydrous conditions, and (4) the entire process requires only simple manipulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic NiFe2O4 Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant

Nanomagnetic NiFe2O4 was used as the efficient, stable, reusable catalyst for selective oxidation of alcohols to their corresponding carbonyl compounds using oxone (potassium hydrogen monopersulfate) as oxidant in the presence of water as solvent at room temperature. The oxidation of various primary and secondary alcohols has been examined and related corresponding products were obtained wi...

متن کامل

Rapid oxidation of alcohols and trimethylsilyl and tetrahydropyranyl ethers with CrO3 in the presence of sulfonic acid functionalized ordered nanoporous Na+-montmorillonite

A mild, efficient and fast method for the oxidation of alcohols and trimethylsilyl and tetrahydropyranyl ethers to their corresponding carbonyl compounds using CrO3 in the presence of sulfonic acid functionalized ordered nanoporous Na+-montmorillonite (SANM) and under solvent-free conditions is reported. All reactions were performed at room temperature in high to excellent...

متن کامل

Rapid oxidation of alcohols and trimethylsilyl and tetrahydropyranyl ethers with CrO3 in the presence of sulfonic acid functionalized ordered nanoporous Na+-montmorillonite

A mild, efficient and fast method for the oxidation of alcohols and trimethylsilyl and tetrahydropyranyl ethers to their corresponding carbonyl compounds using CrO3 in the presence of sulfonic acid functionalized ordered nanoporous Na+-montmorillonite (SANM) and under solvent-free conditions is reported. All reactions were performed at room temperature in high to excellent...

متن کامل

Mn(II) salen complex immobilized on nano silicagel as a recyclable heterogeneous catalyst for oxidation of alcohols to their corresponding carbonyl compounds

Mn(II) salen complex immobilized on nano silicagel was prepared by incorporating Mn(II) salen complex into a nanosilica matrix and characterized by TGA, XRD, atomic absorption spectroscopy and was successfully applied as catalyst for the oxidation of alcohols. Oxidation of a series of alcohols in acetonitrile over immobilized Mn(II) salen complex using tetrabutylammonium peroxymonosulfate (TBAO...

متن کامل

Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant

Zinc ferrite (ZnFe2O4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of Zn2+ and Fe3+ ions (molar ratio 1:2) in ammonia solution. The prepared nanomagnetic catalyst was characterized by IR, XRD, SEM and ICP. The diameter of the ZnFe2O4 MNPs (63.7 nm) was determined by Debye-Scherre equation via their XRD pattern. Nanomagnetic ZnFe2O4 efficiently catalyzes oxidat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016